Formeln : Mathematik - Trigonometrie ◿ (2025)

Table of Contents
Trigonometrie ◿ Definitionen:

Trigonometrie ◿

Definitionen:

  • a: Länge der Gegenkathete
  • b: Länge der Ankathete
  • c: Länge der Hypothenuse
  • h: Länge der Hypothenuse
  • alpha: Winkel α
  • beta: Winkel β
  • gamma: Winkel γ
  • x: a/h
  • y: b/h
  • z: a/b

Satz des Pythagoras

In any right triangle, the area of the square whose side is the hypotenuse (c) is equal to the sum of the areas of the squares whose sides are the two legs (a, b).

\({\color{blue} {c}}^2 = {{\color{red} {a}}^{2}} + {{\color{OliveGreen} {b}}^{2}}\)


\({\color{blue} {c}} = \sqrt{ {{\color{red} {a}}^{2}} + {{\color{OliveGreen} {b}}^{2}} }\)

c = Länge der Hypothenuse

a = Länge der Gegenkathete

b = Länge der Ankathete


\({\color{red} {a}} = \sqrt{ {{\color{blue} {c} }^{2}} - {{\color{OliveGreen} {b} }^{2}} }\)

a = Länge der Gegenkathete

c = Länge der Hypothenuse

b = Länge der Ankathete


\({\color{OliveGreen} {b}} = \sqrt{ {{\color{blue} {c} }^{2}} - {{\color{red} {a} }^{2}} }\)

b = Länge der Ankathete

c = Länge der Hypothenuse

a = Länge der Gegenkathete


\({\color{blue} {c}} = \sqrt{ {{\color{red} {a}}^{2}} + {{\color{OliveGreen} {b}}^{2}} }\)

c = Länge der Hypothenuse

a = Länge der Gegenkathete

b = Länge der Ankathete


\({\color{red} {a}} = \sqrt{ {{\color{blue} {c} }^{2}} - {{\color{OliveGreen} {b} }^{2}} }\)

a = Länge der Gegenkathete

c = Länge der Hypothenuse

b = Länge der Ankathete


\({\color{OliveGreen} {b}} = \sqrt{ {{\color{blue} {c} }^{2}} - {{\color{red} {a} }^{2}} }\)

b = Länge der Ankathete

c = Länge der Hypothenuse

a = Länge der Gegenkathete


Sinus

The sine function is a basic triogemetric function. In a right triangle, sine gives the ratio of the length of the side opposite to an angle to the length of the hypotenuse.

\(\frac{\color{red} {a}}{\color{blue} {c}} = sin\left( {{\color{red} {\alpha} }} \right)\)

x = a/h

alpha = Winkel α


\({{\color{red} {\alpha} }} = sin^{-1}( \frac{\color{red} {a}}{\color{blue} {c}} )\)

alpha = Winkel α

a = Länge der Gegenkathete

c = Länge der Hypothenuse


\({\color{red} {a}} = sin\left( {{\color{red} {\alpha} }} \right) \times {{\color{blue} {c} }}\)

a = Länge der Gegenkathete

alpha = Winkel α

c = Länge der Hypothenuse


\({\color{blue} {c}} = \frac{{\color{red} {a} }}{ sin\left( {{\color{red} {\alpha} }} \right) }\)

h = Länge der Hypothenuse

a = Länge der Gegenkathete

alpha = Winkel α


Kosinus

The cosine function is a basic triogemetric function. In a right triangle, cosine gives the ratio of the length of the side adjacent to an angle to the length of the hypotenuse.

\(\frac{\color{OliveGreen} {b}}{\color{blue} {c}} = cos\left( {{\color{red} {\alpha} }} \right)\)

y = b/h

alpha = Winkel α


\({{\color{red} {\alpha} }} = cos^{-1}( \frac{\color{OliveGreen} {b}}{\color{blue} {c}} )\)

alpha = Winkel α

b = Länge der Ankathete

h = Länge der Hypothenuse


\({\color{OliveGreen} {b}} = cos\left( {{\color{red} {\alpha} }} \right) \times {{\color{blue} {c} }}\)

b = Länge der Ankathete

alpha = Winkel α

h = Länge der Hypothenuse


\({\color{blue} {c}} = \frac{{\color{OliveGreen} {b} }}{ cos\left( {{\color{red} {\alpha} }} \right) }\)

h = Länge der Hypothenuse

b = Länge der Ankathete

alpha = Winkel α


Tangens

The tangent function is a basic triogemetric function. In a right triangle, tangent function gives the ratio of the length of the side opposite to an angle to the length of the adjacent.

\(\frac{\color{red} {a}}{\color{OliveGreen} {b}} = tan\left( {{\color{red} {\alpha} }} \right)\)

z = a/b

alpha = Winkel α


\({{\color{red} {\alpha} }} = tan^{-1}( \frac{\color{red} {a}}{\color{OliveGreen} {b}} )\)

alpha = Winkel α

a = Länge der Gegenkathete

b = Länge der Ankathete


\({\color{red} {a}} = tan\left( {{\color{red} {\alpha} }} \right) \times {{\color{OliveGreen} {b} }}\)

a = Länge der Gegenkathete

alpha = Winkel α

b = Länge der Ankathete


\({\color{OliveGreen} {b}} = \frac{{\color{red} {a} }}{ tan\left( {{\color{red} {\alpha} }} \right) }\)

b = Länge der Ankathete

a = Länge der Gegenkathete

alpha = Winkel α


Trigonometrische Umformungen

\({\color{red} {\alpha}} + {\color{OliveGreen} {\beta}} + {\color{blue} {\gamma}} = 180\)

alpha = Winkel α

beta = Winkel β

gamma = Winkel γ


\(cos(alpha)^2+sin(alpha)^2=1\)

alpha = Winkel α

alpha = Winkel α


\(tan(alpha)=sin(alpha)/cos(alpha)\)

alpha = Winkel α

alpha = Winkel α

alpha = Winkel α


\(cot(alpha)=1/tan(alpha)\)

alpha = Winkel α

alpha = Winkel α


\(sin(alpha)=cos(90-alpha)\)

alpha = Winkel α

alpha = Winkel α


\(cos(alpha)=sin(90-alpha)\)

alpha = Winkel α

alpha = Winkel α


\(tan(alpha)=cot(90-alpha)\)

alpha = Winkel α

alpha = Winkel α


\(sin(2*alpha)=2*sin(alpha)*cos(alpha)\)

alpha = Winkel α

alpha = Winkel α

alpha = Winkel α


\(tan(2*alpha)=2*tan(alpha)/(1-tan(alpha)^2)\)

alpha = Winkel α

alpha = Winkel α

alpha = Winkel α


\(sin(3*alpha)=3*sin(alpha)-4*sin(alpha)^3\)

alpha = Winkel α

alpha = Winkel α

alpha = Winkel α


\(cos(alpha)^2=(1/2)+(1/2)*cos(2*alpha)\)

alpha = Winkel α

alpha = Winkel α


Formeln : Mathematik - Trigonometrie ◿ (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Greg Kuvalis

Last Updated:

Views: 5718

Rating: 4.4 / 5 (75 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Greg Kuvalis

Birthday: 1996-12-20

Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

Phone: +68218650356656

Job: IT Representative

Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.